Pc-Trace

<< 2024年4月 >>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30






Pc-Trace
PC-Trace

< next Inkscapeの記事
>>このカテゴリーの記事一覧

「Inkscape」 プラグイン整備中のテスト

必要があってやっているが、他から見ると年寄りの暇つぶし!
すこぶる順調。

Inkscapeの迷路プラグイン整備中。 Inkscape0.92.3 動いた。


InkscapeからBlenderに移して立体化
ちなみに上のパターンとは別物。(こちらは最初のテスト)


横長なのは円筒で端々がつながる迷路になっており、これは平面展開したもの。
テストなので・・。

Python・迷路ソース

#!/usr/bin/env python

# Draw a cylindrical maze suitable for plotting with the Eggbot
# The maze itself is generated using a depth first search (DFS)

# Written by Daniel C. Newman for the Eggbot Project
# Improvements and suggestions by W. Craig Trader
# 20 September 2010

# Update 26 April 2011 by Daniel C. Newman
#
# 1. Address Issue #40
# The extension now draws the maze by columns, going down
# one column of cells and then up the next column. By using
# this technique, the impact of slippage is largely limited
# the the West and East ends of the maze not meeting. Otherwise,
# the maze will still look quite well aligned both locally and
# globally. Only very gross slippage will impact the local
# appearance of the maze.
#
# Note that this new drawing technique is nearly as fast as
# the prior method. The prior method has been preserved and
# can be selected by setting self.hpp = True. ("hpp" intended
# to mean "high plotting precision".)
#
# 2. Changed the page dimensions to use a height of 800 rather
# than 1000 pixels.
#
# 3. When drawing the solution layer, draw the ending cell last.
# Previously, the starting and ending cells were first drawn,
# and then the solution path itself. That caused the pen to
# move to the beginning, the end, and then back to the beginning
# again to start the solution path. Alternatively, the solution
# path might have been drawn from the end to the start. However,
# just drawing the ending cell last was easier code-wise.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

import sys
import array
import random
import math
import inkex
import simplestyle

# Initialize the psuedo random number generator
random.seed()

PLOT_WIDTH = int( 3200 ) # Eggbot plot width in pixels
PLOT_HEIGHT = int( 800 ) # Eggbot plot height in pixels

TARGET_WIDTH = int( 3200 ) # Desired plot width in pixels
TARGET_HEIGHT = int( 600 ) # Desired plot height in pixels

# Add a SVG path element to the document
# We could do this just as easily as a polyline

def draw_SVG_path( pts, c, t, parent ):
if ( pts is None ) or len( pts ) == 0: # Nothing to draw
return
if isinstance( pts, list ):
assert len( pts ) % 3 == 0, "len(pts) must be a multiple of three"
d = "%s %d,%d" % ( pts[0], pts[1], pts[2] )
for i in range( 3, len( pts ), 3 ):
d += " %s %d,%d" % ( pts[i], pts[i+1], pts[i+2] )
elif isinstance( pts, str ):
d = pts
else:
return
style = { 'stroke':c, 'stroke-width':str( t ), 'fill':'none' }
line_attribs = { 'style':simplestyle.formatStyle( style ),'d':d }
inkex.etree.SubElement( parent, inkex.addNS( 'path','svg' ), line_attribs )

# Add a SVG rect element to the document

def draw_SVG_rect( x, y, w, h, c, t, fill, parent ):
style = { 'stroke':c, 'stroke-width':str( t ), 'fill':fill }
rect_attribs = { 'style':simplestyle.formatStyle( style ),
'x':str( x ), 'y':str( y ),
'width':str( w ), 'height':str( h ) }
inkex.etree.SubElement( parent, inkex.addNS( 'rect', 'svg' ),
rect_attribs )

class Maze( inkex.Effect ):

# Each cell in the maze is represented using 9 bits:
#
# Visited -- When set, indicates that this cell has been visited during
# construction of the maze
#
# Border -- Four bits indicating which if any of this cell's walls are
# part of the maze's boundary (i.e., are unremovable walls)
#
# Walls -- Four bits indicating which if any of this cell's walls are
# still standing
#
# Visited Border Walls
# x x x x x x x x x
# W S E N W S E N

_VISITED = 0x0100
_NORTH = 0x0001
_EAST = 0x0002
_SOUTH = 0x0004
_WEST = 0x0008

def __init__( self ):

inkex.Effect.__init__( self )

self.OptionParser.add_option(
"--tab", action="store", type="string",
dest="tab", default="controls",
help="The active tab when Apply was pressed" )
self.OptionParser.add_option(
"--mazeSize", action="store", type="string", dest="mazeSize",
default="MEDIUM", help="Difficulty of maze to build" )
#self.OptionParser.add_option(
# "--hpp", action="store", type="inkbool", dest="hpp", default=False,
# help="Use a faster plotting technique that requires much better plotting precision" )
#self.hpp = self.options.hpp

self.hpp = False

self.w = int( 0 )
self.h = int( 0 )
self.solved = int( 0 )
self.start_x = int( 0 )
self.start_y = int( 0 )
self.finish_x = int( 0 )
self.finish_y = int( 0 )
self.solution_x = None
self.solution_y = None
self.cells = None

# Drawing information
self.scale = float( 25.0 )
self.last_point = None
self.path = ''

def effect( self ):

# These dimensions are chosen so as to maintain integral dimensions
# with a ratio of width to height of TARGET_WIDTH to TARGET_HEIGHT.
# Presently that's 3200 to 600 which leads to a ratio of 5 and 1/3.

if self.options.mazeSize == 'SMALL':
self.w = int( 32 )
self.h = int( 6 )
elif self.options.mazeSize == 'MEDIUM':
self.w = int( 64 )
self.h = int( 12 )
elif self.options.mazeSize == 'LARGE':
self.w = int( 96 )
self.h = int( 18 )
else:
self.w = int( 128 )
self.h = int( 24 )

# The large mazes tend to hit the recursion limit
limit = sys.getrecursionlimit()
if limit < ( 4 + self.w * self.h ):
sys.setrecursionlimit( 4 + self.w * self.h )

maze_size = self.w * self.h
self.finish_x = int( self.w - 1 )
self.finish_y = int( self.h - 1 )
self.solution_x = array.array( 'i', range( 0, maze_size ) )
self.solution_y = array.array( 'i', range( 0, maze_size ) )
self.cells = array.array( 'H', range( 0, maze_size ) )

# Remove any old maze
for node in self.document.xpath( '//svg:g[@inkscape:label="1 - Maze"]', namespaces=inkex.NSS ):
parent = node.getparent()
parent.remove( node )

# Remove any old solution
for node in self.document.xpath( '//svg:g[@inkscape:label="2 - Solution"]', namespaces=inkex.NSS ):
parent = node.getparent()
parent.remove( node )

# Remove any empty, default "Layer 1"
for node in self.document.xpath( '//svg:g[@id="layer1"]', namespaces=inkex.NSS ):
if not node.getchildren():
parent = node.getparent()
parent.remove( node )

# Start a new maze
self.solved = 0
self.start_x = random.randint( 0, self.w - 1 )
self.finish_x = random.randint( 0, self.w - 1 )

# Initialize every cell with all four walls up

for i in range( 0, maze_size ):
self.cells[i] = Maze._NORTH | Maze._EAST | Maze._SOUTH | Maze._WEST

# Now set our borders -- borders being walls which cannot be removed.
# Since we are a maze on the surface of a cylinder we only have two
# edges and hence only two borders. We consider our two edges to run
# from WEST to EAST and to be at the NORTH and SOUTH.

z = ( self.h - 1 ) * self.w
for x in range( 0, self.w ):
self.cells[x] |= Maze._NORTH << 4
self.cells[x + z] |= Maze._SOUTH << 4

# Build the maze
self.handle_cell( 0, self.start_x, self.start_y )

# Now that the maze has been built, remove the appropriate walls
# associated with the start and finish points of the maze

# Note: we have to remove these after building the maze. If we
# remove them first, then the lack of a border at the start (or
# finish) cell will allow the handle_cell() routine to wander
# outside of the maze. I.e., handle_cell() doesn't do boundary
# checking on the cell cell coordinates it generates. Instead, it
# relies upon the presence of borders to prevent it wandering
# outside the confines of the maze.

self.remove_border( self.start_x, self.start_y, Maze._NORTH )
self.remove_wall( self.start_x, self.start_y, Maze._NORTH )

self.remove_border( self.finish_x, self.finish_y, Maze._SOUTH )
self.remove_wall( self.finish_x, self.finish_y, Maze._SOUTH )

# Now draw the maze

# The following scaling and translations scale the maze's
# (width, height) to (TARGET_WIDTH, TARGET_HEIGHT), and translates
# the maze so that it centered within a document of dimensions
# (width, height) = (PLOT_WIDTH, PLOT_HEIGHT)

# Note that each cell in the maze is drawn 2 x units wide by
# 2 y units high. A width and height of 2 was chosen for
# convenience and for allowing easy identification (as the integer 1)
# of the centerline along which to draw solution paths. It is the
# abstract units which are then mapped to the TARGET_WIDTH eggbot x
# pixels by TARGET_HEIGHT eggbot y pixels rectangle.

scale_x = float( TARGET_WIDTH ) / float( 2 * self.w )
scale_y = float( TARGET_HEIGHT ) / float( 2 * self.h )
translate_x = float( PLOT_WIDTH - TARGET_WIDTH ) / 2.0
translate_y = float( PLOT_HEIGHT - TARGET_HEIGHT ) / 2.0

# And the SVG transform is thus
t = 'translate(%f,%f)' % ( translate_x, translate_y ) + \
' scale(%f,%f)' % ( scale_x, scale_y )

# For scaling line thicknesses. We'll typically draw a line of
# thickness 1 but will need to make the SVG path have a thickness
# of 1 / scale so that after our transforms are applied, the
# resulting thickness is the 1 we wanted in the first place.

if scale_x > scale_y:
self.scale = scale_x
else:
self.scale = scale_y

self.last_point = None
self.path = ''

if not self.hpp:

# To draw the walls, we start at the left-most column of cells, draw down drawing
# the WEST and NORTH walls and then draw up drawing the EAST and SOUTH walls.
# By drawing in this back and forth fashion, we minimize the effect of slippage.

for x in range( 0, self.w, 2 ):
self.draw_vertical( x )

else:

# The drawing style of the "high plotting precision" / "faster plotting" mode
# is such that it minimizes the number of pen up / pen down operations
# but at the expense of requiring higher drawing precision. It's style
# of drawing works best when there is very minimal slippage of the egg

# Draw the horizontal walls

self.draw_horizontal_hpp( 0, Maze._NORTH )
for y in range( 0, self.h - 1 ):
self.draw_horizontal_hpp( y, Maze._SOUTH )
self.draw_horizontal_hpp( self.h - 1, Maze._SOUTH )

# Draw the vertical walls

# Since this is a maze on the surface of a cylinder, we don't need
# to draw the vertical walls at the outer edges (x = 0 & x = w - 1)

for x in range( 0, self.w ):
self.draw_vertical_hpp( x, Maze._EAST )

# Maze in layer "1 - Maze"
attribs = {
inkex.addNS( 'label', 'inkscape' ) : '1 - Maze',
inkex.addNS( 'groupmode', 'inkscape' ) : 'layer',
'transform' : t }
maze_layer = inkex.etree.SubElement( self.document.getroot(), 'g', attribs )
draw_SVG_path( self.path, "#000000", float( 1 / self.scale ), maze_layer )

# Now draw the solution in red in layer "2 - Solution"

attribs = {
inkex.addNS( 'label', 'inkscape' ) : '2 - Solution',
inkex.addNS( 'groupmode', 'inkscape' ) : 'layer',
'transform' : t }
maze_layer = inkex.etree.SubElement( self.document.getroot(), 'g', attribs )

# Mark the starting cell

draw_SVG_rect( 0.25 + 2 * self.start_x, 0.25 + 2 * self.start_y,
1.5, 1.5, "#ff0000", 0, "#ff0000", maze_layer )

# And now generate the solution path itself

# To minimize the number of plotted paths (and hence pen up / pen
# down operations), we generate as few SVG paths as possible.
# However, for aesthetic reasons we stop the path and start a new
# one when it runs off the edge of the document. We could keep on
# drawing as the eggbot will handle that just fine. However, it
# doesn't look as good in Inkscape. So, we end the path and start
# a new one which is wrapped to the other edge of the document.

pts = []
end_path = False
i = 0
while i < self.solved:

x1 = self.solution_x[i]
y1 = self.solution_y[i]

i += 1
x2 = self.solution_x[i]
y2 = self.solution_y[i]

if math.fabs( x1 - x2 ) > 1:

# We wrapped horizontally...
if x1 > x2:
x2 = x1 + 1
else:
x2 = x1 - 1
end_path = True

if i == 1:
pts.extend( [ 'M', 2 * x1 + 1, 2 * y1 + 1 ] )
pts.extend( [ 'L', 2 * x2 + 1, 2 * y2 + 1 ] )

if not end_path:
continue

x2 = self.solution_x[i]
y2 = self.solution_y[i]
pts.extend( [ 'M', 2 * x2 + 1, 2 * y2 + 1 ] )
end_path = False

# Put the solution path into the drawing
draw_SVG_path( pts, '#ff0000', float( 8 / self.scale ), maze_layer )

# Now mark the ending cell
draw_SVG_rect( 0.25 + 2*self.finish_x, 0.25 + 2 * self.finish_y,
1.5, 1.5, "#ff0000", 0, "#ff0000", maze_layer )

# Restore the recursion limit
sys.setrecursionlimit( limit )

# Set some document properties
node = self.document.getroot()
node.set( 'width', '3200' )
node.set( 'height', '800' )

# The following end up being ignored by Inkscape....
node = self.getNamedView()
node.set( 'showborder', 'false' )
node.set( inkex.addNS( 'cx', u'inkscape' ), '1600' )
node.set( inkex.addNS( 'cy', u'inkscape' ), '500' )
node.set( inkex.addNS( 'showpageshadow', u'inkscape' ), 'false' )

# Mark the cell at (x, y) as "visited"
def visit( self, x, y ):
self.cells[y * self.w + x] |= Maze._VISITED

# Return a non-zero value if the cell at (x, y) has been visited
def is_visited( self, x, y ):
if self.cells[y * self.w + x] & Maze._VISITED:
return -1
else:
return 0

# Return a non-zero value if the cell at (x, y) has a wall
# in the direction d
def is_wall( self, x, y, d ):
if self.cells[y * self.w + x] & d:
return -1
else:
return 0

# Remove the wall in the direction d from the cell at (x, y)
def remove_wall( self, x, y, d ):
self.cells[y * self.w + x] &= ~d

# Return a non-zero value if the cell at (x, y) has a border wall
# in the direction d
def is_border( self, x, y, d ):
if self.cells[y * self.w + x] & ( d << 4 ):
return -1
else:
return 0

# Remove the border in the direction d from the cell at (x, y)
def remove_border( self, x, y, d ):
self.cells[y * self.w + x] &= ~( d << 4 )

# This is the DFS algorithm which builds the maze. We start at depth 0
# at the starting cell (self.start_x, self.start_y). We then walk to a
# randomly selected neighboring cell which has not yet been visited (i.e.,
# previously walked into). Each step of the walk is a recursive descent
# in depth. The solution to the maze comes about when we walk into the
# finish cell at (self.finish_x, self.finish_y).
#
# Each recursive descent finishes when the currently visited cell has no
# unvisited neighboring cells.
#
# Since we don't revisit previously visited cells, each cell is visited
# no more than once. As it turns out, each cell is visited, but that's a
# little harder to show. Net, net, each cell is visited exactly once.

def handle_cell( self, depth, x, y ):

# Mark the current cell as visited
self.visit( x, y )

# Save this cell's location in our solution trail / backtrace
if not self.solved:

self.solution_x[depth] = x
self.solution_y[depth] = y

if ( x == self.finish_x ) and ( y == self.finish_y ):
# Maze has been solved
self.solved = depth

# Shuffle the four compass directions: this is the primary source
# of "randomness" in the generated maze. We need to visit each
# neighboring cell which has not yet been visited. If we always
# did that in the same order, then our mazes would look very regular.
# So, we shuffle the list of directions we try in order to find an
# unvisited neighbor.

# HINT: TRY COMMENTING OUT THE shuffle() BELOW AND SEE FOR YOURSELF

directions = [Maze._NORTH, Maze._SOUTH, Maze._EAST, Maze._WEST]
random.shuffle( directions )

# Now from the cell at (x, y), look to each of the four
# directions for unvisited neighboring cells

for i in range( 0, 4 ):

# If there is a border in direction[i], then don't try
# looking for a neighboring cell in that direction. We
# Use this check and borders to prevent generating invalid
# cell coordinates.

if self.is_border( x, y, directions[i] ):
continue

# Determine the cell coordinates of a neighboring cell
# NOTE: we trust the use of maze borders to prevent us
# from generating invalid cell coordinates

if directions[i] == Maze._NORTH:
nx = x
ny = y - 1
opposite_direction = Maze._SOUTH

elif directions[i] == Maze._SOUTH:
nx = x
ny = y + 1
opposite_direction = Maze._NORTH

elif directions[i] == Maze._EAST:
nx = x + 1
ny = y
opposite_direction = Maze._WEST

else:
nx = x - 1
ny = y
opposite_direction = Maze._EAST

# Wrap in the horizontal dimension
if nx < 0:
nx += self.w
elif nx >= self.w:
nx -= self.w

# See if this neighboring cell has been visited
if self.is_visited( nx, ny ):
# Neighbor has been visited already
continue

# The neighboring cell has not been visited: remove the wall in
# the current cell leading to the neighbor. And, from the
# neighbor remove its wall leading to the current cell.

self.remove_wall( x, y, directions[i] )
self.remove_wall( nx, ny, opposite_direction )

# Now recur by "moving" to this unvisited neighboring cell

self.handle_cell( depth + 1, nx, ny )

def draw_line( self, x1, y1, x2, y2 ):

if self.last_point is not None:
if ( self.last_point[0] == x1 ) and ( self.last_point[1] == y1 ):
self.path += ' L %d,%d' % ( x2, y2 )
self.last_point = [ x2, y2 ]
elif ( self.last_point[0] == x2 ) and ( self.last_point[1] == y2 ):
self.path += ' L %d,%d L %d,%d' % ( x1, y1, x2, y2 )
# self.last_point unchanged
else:
self.path += ' M %d,%d L %d,%d' % ( x1, y1, x2, y2 )
self.last_point = [ x2, y2 ]
else:
self.path = 'M %d,%d L %d,%d' % ( x1, y1, x2, y2 )
self.last_point = [ x2, y2 ]

def draw_wall( self, x, y, d, dir ):

if dir > 0:
if d == Maze._NORTH:
self.draw_line( 2*(x+1), 2*y, 2*x, 2*y )
elif d == Maze._WEST:
self.draw_line( 2*x, 2*y, 2*x, 2*(y+1) )
elif d == Maze._SOUTH:
self.draw_line( 2*(x+1), 2*(y+1), 2*x, 2*(y+1) )
else: # Mase._EAST
self.draw_line( 2*(x+1), 2*y, 2*(x+1), 2*(y+1) )
else:
if d == Maze._NORTH:
self.draw_line( 2*x, 2*y, 2*(x+1), 2*y )
elif d == Maze._WEST:
self.draw_line( 2*x, 2*(y+1), 2*x, 2*y )
elif d == Maze._SOUTH:
self.draw_line( 2*x, 2*(y+1), 2*(x+1), 2*(y+1) )
else: # Maze._EAST
self.draw_line( 2*(x+1), 2*(y+1), 2*(x+1), 2*y )

# Draw the vertical walls of the maze along the column of cells at
# horizonal positions

def draw_vertical( self, x ):

# Drawing moving downwards from north to south

if self.is_wall( x, 0, Maze._NORTH ):
self.draw_wall( x, 0, Maze._NORTH, +1 )

for y in range( 0, self.h ):
if self.is_wall( x, y, Maze._WEST ):
self.draw_wall( x, y, Maze._WEST, +1 )
if self.is_wall( x, y, Maze._SOUTH ):
self.draw_wall( x, y, Maze._SOUTH, +1 )

# Now, return drawing upwards moving from south to north

x += 1
if x >= self.w:
return

for y in range( self.h - 1, -1, -1 ):
if self.is_wall( x, y, Maze._SOUTH ):
self.draw_wall( x, y, Maze._SOUTH, -1 )
if self.is_wall( x, y, Maze._WEST ):
self.draw_wall( x, y, Maze._WEST, -1 )
if self.is_wall( x, 0, Maze._NORTH ):
self.draw_wall( x, 0, Maze._NORTH, -1 )

# Draw the horizontal walls of the maze along the row of
# cells at "height" y: "high plotting precision" version

def draw_horizontal_hpp(self, y, wall ):

# Cater to Python 2.4 and earlier
# dy = 0 if wall == Maze._NORTH else 1
if wall == Maze._NORTH:
dy = 0
else:
dy = 1

tracing = False
for x in range( 0, self.w ):

if self.is_wall( x, y, wall ):
if not tracing:
# Starting a new segment
segment = x
tracing = True
else:
if tracing:
# Reached the end of a segment
self.draw_line( 2 * segment, 2 * (y + dy),
2 * x, 2 * (y + dy) )
tracing = False

if tracing:
# Draw the last wall segment
self.draw_line( 2 * segment, 2 * (y + dy),
2 * self.w, 2 * (y + dy) )


# Draw the vertical walls of the maze along the column of cells at
# horizonal position x: "high plotting precision" version

def draw_vertical_hpp(self, x, wall ):

# Cater to Python 2.4 and earlier
# dx = 0 if wall == Maze._WEST else 1
if wall == Maze._WEST:
dx = 0
else:
dx = 1

# We alternate the direction in which we draw each vertical wall.
# First, from North to South and then from South to North. This
# reduces pen travel on the Eggbot

if x % 2 == 0: # North-South
y_start, y_finis, dy, offset = 0, self.h, 1, 0
else: # South-North
y_start, y_finis, dy, offset = self.h - 1, -1, -1, 2

tracing = False
for y in range( y_start, y_finis, dy ):
assert 0 <= y and y < self.h, "y (%d) is out of range" % y
if self.is_wall( x, y, wall ):
if not tracing:
# Starting a new segment
segment = y
tracing = True
else:
if tracing:
# Hit the end of a segment
self.draw_line( 2 * ( x + dx ), 2 * segment + offset,
2 * ( x + dx ), 2 * y + offset )
tracing = False

if tracing:
# complete the last wall segment
self.draw_line( 2 * ( x + dx ), 2 * segment + offset,
2 * ( x + dx ), 2 * y_finis + offset )

if __name__ == '__main__':
e = Maze()
e.affect()


添付ファイル 添付ファイル


「Coffee Break」 幾何学文様_01

「Inkscape」に没頭する日々が続いている。
拡張プラグインで変幻自在な便利機能を包含できるアプリとあっては当然の事か。(用が済んだらすぐに飽きる)

実は、0.91以上では動作しないと言われているプラグインを最新のInkscapeに移植中。(グヌーなので自在に改変、配布できる)
面倒な説明は省くが、作成した文様はその一環でのテスト結果。
粘れば素人でも出来る事の証明。




添付ファイル 添付ファイル


「Inkscape」のメニューフォントについて(Win7)

Inkscapeのメニューに関する備忘録

Windows7に新しいバージョンのInkscapeを入れた際、メニューの書体が明朝に戻ってしまった。

そのままでも良いが、メニューだけが明朝で、ポップアップされるダイアログのメニューや項目はゴシック表示という調和のとれていない違和感がある。

メニューだけ明朝


やはりこちらの表示がシックリくる。


WindowsXPの場合とやり方は異なるが、添付したzipファイルを解凍し「gtkrc」がインストールされているフォルダに上書きする事でゴシック表示にできる。(保証無し:故に自己責任において)

インストールフォルダがC:\Program Filesの場合、
C:\Program Files\Inkscape\share\themes\MS-Windows\gtk-2.0
に、gtkrc(属性無し)を上書きする。

その後Inkscapeを再起動。
添付ファイル 添付ファイル


「JTP_Laser_Tool_V2_2」日本語化によるDXF検証中

J Tech Photonics、Incプラグインの、日本語化に伴う「AutoCADR13」以降のDXFデータ取り込み部分の検証中

かなり古い図面だが読み込みは順調


別にInkscapeで製図するわけでは無い。
Axidraw、レーザー加工機絡みのテスト

この後は「Grbl」によるVer0.92版のレーザー加工部分のテスト予定。


「Inkscape Laser Tool Plug-In」補足説明

前出の記事中にある「Inkscape Laser Tool Plug-In」について補足説明

日本語版に変更したプラグインはバージョン0.91のものでしたが、その後Gコード処理に対する大きな変更や拡張があったようで、新旧問わずInkscapeでのレーザープラグインの利用を検討されている方はJ TECHのサイトを確認する事をおすすめします。

Download:
https://jtechphotonics.com/?page_id=1980



「FlightsOfIdeas」プラグインによるレーザー加工データの作成

これは個人的な備忘録。
自分だけが解れば良い手抜き+雑な動画なので見る方はあしからず。

加工用のデータを作成するプラグインは、本ブログの過去記事にGoogleトランスレータ+辞書で日本語化し、「レーザー加工」、「Axidraw(プロッター)」、「NC加工」で兼用できるように修正して残してあるので興味のある方は・・。

オリジナル版(Inkscape Laser Tool Plug-In)・リンク:
https://jtechphotonics.com/?page_id=2012



動画の中で、エクスポート時のダイアログが日本語表示になっているが、英語が苦手なため。(はっきり言ってロボットを信用するしか手立てがないのでデタラメな可能性があります)
同じものを使いたい方は、添付ファイルを解凍し、SketchUpのpluginフォルダに投げ込むと使えるようになる。(エクスポートのみ)

※動画中に出てくる「Inkscape Laser Tool Plug-In」の設定値はレーザーや、NC用ではないので注意!(コード動作確認用)
次に続く
添付ファイル 添付ファイル


「Coffee Break」 svgでハマる

この動画で二日間ハマってしまった。



「SketchUp8」ではこの動画通りにうまくいかなかった。
原因がRuby絡みで他のファイルも複数集めなければならず、変更内容もWEB上で多岐にわたっている。
個人的には手間暇かけるより安易に「Blender」で代替する事に決定。
必要な部分を3D化してSketchUpに渡す事もできるので機能的には満足できる。

使うのはSVGのエクスポーター(トンボ or 蚊?のアイコン)のみ。
SVGのエクスポーター「FlightsOfIdeas」プラグインは「SketchUp」で設計した図面を直接「Inkscape」に送り込む事ができ、その後の展開に大きく貢献してくれる。

Inkscape側での作業としてマテリアルの編集だけでなく「EggBot」用「gcode」データの生成や、レーザー加工「Grbl」形式「gcode」データの生成、それらに用いる両プラグインとの親和性も良好で、実際にArduino「UNO」のボードに各々のファームウェアを書き込んで、動作確認まで終える事ができた。(僅かにコツがいるので後々のために備忘録が必要)

「sketchup-svg-outline-plugin-master」中、エクスポートに使ったファイルは以下の2つのみ

FlightsOfIdeas
flightsofideas.rb

続く・・

ソース改変無しでの再配布が可能らしいので添付
添付ファイル 添付ファイル


「Inkscape」と「SketchUp8」の仲介ソフト「Blender」

Inkscapeに取り込んだ画像をSketchUpに渡すまでの動画。



※添付動画はデータ変換工程
添付ファイル 添付ファイル


「Inkscape」と「SketchUp」

PDF問題があっさり片付いたのでしばらく "のんびり" できた。

なので、浮いた時間で「Coffee Break」
InkscapeとSketchUp間のデータ相性を探る。
結果、なかなかの仲だった。

Inkscapeでテストデータ作成


画像が絡まなければ色もそのまま読み込める。
SketchUp8で読み込んで面を立体化して遊ぶ。


毎度、3分程度のネタ。
続く。


< next